i * REPORT DOCUMENTATI Fom Acoroved
ATION PAGE o
mmwmmmamnmmmawmrwnwm-.mcu-qmmmmm :
?mu-“_ v the eaca NG COUMOIFTNG 4G rPeatag IR COHECTION Of 'NTOrmenon. Seng comment mwmmmmm
S o T I i T o S T P S e e 13 e T e

1. AGI”C-V Ust OMLY (Leave bienk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 20, 1994 é‘a@é%echnical Report 8/1/93-9/30/94
S. FUNDING NUMBERS

e ——
4 TITLE AND SUBTITLS

Towards Increased Productivity of
Algorithm Implementation . AFOSR=91-0308

¢ AUTHORGS) @Iy F
Robert Paige B?SOH(fFS

7. PERPORMING ORGANIZATION NAME(S) AND ADORESS(ES) L PAFORMING CRCARGATON
New York University REPORT NUMSIR
Office of Sponsored Research
REOSRIR- 9 b = 0 29 3

15 Washington Place
New York, NY 10003

9. SPONSORING MONITORING AGENCY NAME(S) AND AGORESS(ES) 10. SPONSORING / MONITORING
Department of the Air Force //UH AGENCY RIPORT NUMSER
Air Force Office of Scientific Research , c X o
Bolling AFB DC 20332 A Fose -91-030%

11. SUPPLEMENTARY NOTES g

APR 0 4 1994 §
122, DISTRIBUTION/ AVARLABIITY STATEMENT F 128, OISTRIBUTION COOM
Unlimited

ahlie reledd:

grproved for ™
dﬁistribu't jenunlinited.

e ———————
13. ABSTRACT (Maxaxmum 200 woras)

Last year we reported experimental results in productivity of nonnumerical algorithm

implementation using transformational programming. Comparative benchmarks suggest that
productivity can be increased by our approach over conventonal hand crafted programming by

factors ranging from 5.1 to 9.9. Preliminary results also showed that the running time of C code
produced by this new approach can be as fast as 1.5 times that of tightly coded high quality For-

19950403 026

P ——————
14 SURIECT TERMS

13. NUMBER OF PAGES

16 PRICE COD#

17. SECURITY CLASSIFICATION | 18, sEcUmITY CLASSIFICATION | 19. SECURITY CLASSIFCATION | 20. UMITATION GF ABSTRACT
Of REPORT OF THIS PAGE OF ABSTRACT

Maelgasibied Unclggs Siad) unclag=res ool SR
NSN 7540-01-280-5500 T, Stancard Form 138 (Rev. 149

Report Type: Annual Technical Report
Title: Towards Increased Productivity of Algorithm Implementation
GRANT: AFOSR-91-0308

August 1, 1993 to September 30, 1994

Robert Paige

Dept. of Computer Science
New York University/ Courant Institute
251 Mercer St.
New York, NY 10012

ABSTRACT:

Last year we reported experimental results in productivity of nonnumerical algorithm
implementation using transformational programming. Comparative benchmarks suggest that
productivity can be increased by our approach over conventional hand crafted programming by
factors ranging from 5.1 to 9.9. Preliminary results also showed that the running time of C code

produced by this new approach can be as fast as 1.5 times that of tightly coded high quality For-
tran.

Accesion For

\
NTIS CRA&I g]

O

]

DTIC TAR
Unanr*.ourz;.s.—*d
Justification

By ...
Distribution/

Availability Coces

Avail and]or
Dist Special

A

(a) Objectives

The proposed research aims to improve the production rate and the reliability of high per-
formance implementations of nonnumerical algorithms. The approach utilizes program transfor-
mations that capture broad algorithm design principles. These transformations are evaluated
prior to an implementation by testing whether they can be used effectively both to explain com-
plex algorithms, and also to help design new algorithms. The implementation methodology
makes use of conditional rewriting together with logic based program analysis. The program
development methodology is evaluated by productivity experiments.

(b) Status

Last year was spent visiting DIKU at the University of Copenhagen. The Computer Sci-
ence Department there is particularly strong in programming languages, especially in the
subareas of type theory and partial evaluation. Interactions with Fritz Henglein and his student
Jacob Rehof in type theory and with Neil Jones in partial evaluation provided valuable insight
for scaling up the experiments in our AFOSR-funded research in productivity improvement of
algorithm implementation.

The productivity experiments carried out in 1993 were reported in Dec. 1993 at the ACM
SIGSOFT Conf. [Cai93a]. The results suggest that productivity of algorithm implementation in
C (measured in terms of number of source C lines per unit of manual programming time) can be
increased by our approach over conventional hand crafted programming by factors ranging from
5.1t09.9. Preliminary results also showed that the running time of C code produced by this new
approach can be as fast as 1.5 times that of tightly coded high quality Fortran.

The preceding work aroused attention at a Dagstuhl workshop last year, and an invited talk
was requested for the joint PLILP/ALP Conf. in Sept. 94 in which our program development
technology could be publically demonstrated [Paige94d].

As encouraging as this sounds, there are two hurdles that still need to be overcome before
this novel program development technology can be practical. First, the technology needs to
scale up. The SIGSOFT paper reported experimental development of 9 C programs, the largest
of which is around 10 pages long. A much more credible case would be made with programs 50
pages long. A related problem is the slow rate at which C programs are mechanically produced
from hand-coded high level specifications. 3.3 lines of specification are turned into 24 lines of C
every minute. A plan is outlined in [Paige94d] for increasing this production rate 6000 times.

Much of the research over the last year was in preparation for scaling up the program
development technology. At the heart of our transformational methodology is a type/subtype
system that facilitates perspicuous mathematical specification of efficient data structures and
algorithms without extraneous implementation detail. More importantly, such specifications
lead to a set-theoretic language with computational transparency; i.e., programs can be analyzed
accurately for run-time resource utilization, so that programming can be guided by complexity
considerations.

Most of our effort last year (as part of the scale-up effort) was in extending the type/subtype
system with an abstract datatype capability and a crucial, but technically difficult, ability to han-
dle recursively defined subtypes with disjoint alternation (which considerably broadens the

. © .3

contexts in which a unit-time implementable associative access can be used in our specification
language). This theoretical work is now completed, and the more pragmatic research involved
in fitting it into a programming language has just begun. Since reading high level external input
is the beginning of computation, we decided to begin this work with the development of algo-
rithms to translate high level external input data in string form into the efficient data structures
modeled by the new type/subtype system. This work is now done, and the core algorithms are
reported in [Paige94b]. The next step is to develop new type and subtype inference algorithms
for the specification language, and to modify our specification compilers in order to exploit the
new type/subtype system and to generate efficient C code.

Sagiv, a postdoc on the AFOSR grant, spent most of the year working on efficient inter-
procedural analysis methods for distributive functions, and a paper coauthored with Tom Reps
and Susan Horwitz has been accepted at POPL 95. That work will, hopefully, contribute to our
plans to design interprocedural type and subtype inference algorithms. Jacob Rehoff, a student
at DIKU supported by AFOSR, worked on the very interesting notion of optimal dynamic type
checking and type conversion in a dynamically typed language. The completion of his work
may shed light on the right kind of balance needed in a high level programming language
between the flexibility of dynamic typing (as in Scheme, SETL, and in standard mathematical
discourse) and the safety of strong typing (as in ML and in our current specification language).

Last year we were involved in several algorithm design projects with the aim of implement-
ing these new algorithms as part of experiments with scaled up programs. In [Cai94] we
extended Paige and Tarjan’s simple algorithm [SICOMP 87] to find duplicate strings contained
in a multiset of strings into a general purpose ‘multiset discrimination’ tool for finding duplicate
data contained in a wide subset of our new type system. Using this tool, we were able to obtain
improved solutions to virtually every compilation task from front-end macro processing down to
global optimization by strength reduction. This tool was central to the development of the read-
ing algorithms in [Paige94b].

With Nils Klarlund at the U. of Aarhus we developed new DFA minimization algorithms
for large alphabet sizes and for potentially small number of transitions leading out from any
state. These algorithms make use of new improved BDD simplification algorithms that depend
on multiset discrimination. Klarlund needs these algorithms to speedup his program verification
system.

With Neil Jones at the U. of Copenhagen we developed new unification algorithms that
accelerate the classical union/find algorithm of Huet, and Vitter and Simons. Our algorithms are
also top-down, and report occurs checks early. We plan to generate C code from high level
specifications of these algorithms, and to conduct comparative benchmarks with implementa-
tions of other algorithms.

With J.P. Keller we derived a new DFA minimization algorithm with space asymptotically
better than Hopcroft’s algorithm of 1971. This research also involved integration of program
transformations using APTS with set theoretic proof construction and checking using Keller’s
Aetna system. One conclusion drawn from this work is that the more rapidly that APTS can pro-
duce high performance C code, the more critical it needs to be equipped with the safety of
machine-checked verification of the transformations involved in code production. Because we
observed how difficult and painfully slow it is to construct such formal proofs (a view shared by

. Y4

expert users of other systems), the formidable problem of making proof construction easier is
essential to making our technology scale up in a practical way.

Besides the algorithms just mentioned, the new algorithms that we derived in [Bloom94]
are candidates for scaled up experiments.

Last year we reported several other peripheral aspects of the AFOSR-funded research. An
independent application of APTS as part of a running geometric constraint solving system is in
press [Bouma93]. A survey of our research together with relevant open problems was published
in [Paige94c].

(c) Publications

[Bouma93] Bouma, W., Cai, J., Fudos, I., Hoffmann, C., and Paige, R.,
"A Geometric Constraint Solver," Purdue U. TR 93-54, accepted CAD,
1993.

[Bloom94] Bloom, B. and Paige, R., "Transformational Design and
Implementation Of a New Efficient Solution to the Ready Simulation Problem,"
accepted at Science of Computer Programming, 1993.

[Cai94] Cai, J. and Paige, R., "Using Multiset Discrimination To
Solve Language Processing Problems Without Hashing," accepted at
Theoretical Computer Science; also DIKU-TR Num. 94/16.

[Cai93a] Cai, J. and Paige, R., "Towards Increased Productivity of
Algorithm Implementation," Proc. ACM SIGSOFT, in Software Engineering
Notes, ed. David Notkin, Vol 18, Num 5, Dec. 1993, pp. 71 - 78.

[Paige94b] Paige, R., "Efficient Translation of External Input in a
Dynamically Typed Language," to appear Proc. IFIP Congress 94 - Vol 1,
eds. B. Pehrson and I. Simon, Elsevier, Sept 1994, pp. 603 - 608.

[Paige94c] Paige, R., "Atlantique Research Overview,"” Proc. Atlantique
Workshop on Semantics Based Program Manipulation,” eds. N. Jones and
C. Talcott, DIKU Report 94/12, Paige.

[Paige94d] Paige, R., "Viewing a program transformation system at work"
Joint 6th Intl. Conf. on Programming Language Implementation and Logic
Programming (PLILP) and 4th Intl. Conf. on Algebraic and Logic
Programming (ALP), eds. M. Hermenegildo and J. Penjam, LNCS Num.844,
Springer-Verlag, Sep. 1994, pp. 5 - 24.

(d) Personnel

Jacob Rehoff, grad. student
email: rehoff@diku.dk
Address:

DIKU

University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen East
Denmark

Shmuel Sagiv, postdoc, Associate Research Scientist, Sept. 1993 to May, 1994.
email: sagiv@diku.dk

Current Address:

Computer Sciences Dept.

U. of Wisconsin

1210 W. Dayton

Madison, WI 53706

Robert A. Paige, PL

email: paige@diku.dk
office phone: 212-998-3080
Address:

DIKU

University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen East
Denmark

(e) Interactions
i. Invited Talks
Seminar, U. of Copenhagen, "Reading Revisited," Sept. 1993.

Seminar, U. of Utrecht, "Towards Increased Productivity of Algorithm
Implementation," Oct. 1993.

Seminar, SUNY, Albany, "Towards Increased Productivity of Algorithm
Implementation," Dec. 1993.

Seminar, ISI/USC, "High Level Reading and Data Structure
Compilation," Dec. 1993.

Seminar, UCLA, "Program Development and Algorithm Design by
Transformation,"” Dec. 1993,

’ . -6-

Seminar, Stanford U., "High Level Reading and Data Structure
Compilation," Dec. 1993.

Seminar, Aarhus University, "Derivation of Fast Strong Bisimulation
and DFA Minimization," Mar. 1994,

Theory Seminar, Aarhus University, "From Regular Expressions to
DFA’s,"” Mar. 1994,

Seminar, LITP, "Algorithm Design and Implementation by Program
Transformation," Mar. 1994.

Seminar, Ecole Polytechnique, "Algorithm Design and Implementation
by Program Transformation," Mar. 1994.

Seminar, U. of Trondheim, "Productivity Improvement of Algorithm
Implementation," Aug. 1994,

Seminar, Tech. U. of Berlin, "Algorithm Design and Program Development
by Transformation," Aug. 1994,

Seminar, Tech. U. of Berlin, "High Level Reading,” Aug. 1994.

Seminar, U. of Saarlandes, "High Level Reading," Aug. 1994,
ii. Workshop and Conference Presentations

Presentation at ACM SIGSOFT Conf., "Towards Increased Productivity
of Algorithm Implementation," Dec. 1993.

Presentation at IFIPS WG2.1 Meeting, "Algorithm Invention By
Transformation," Rencum, The Netherlands, Jan. 1994,

Presentation at IFIPS WG2.1 Meeting, "High Level Reading and
Data Structure Compilation," Rencum, The Netherlands, Jan. 1994.

Presentation at IFIPS WG2.1 Meeting, "Algorithm Specification,"
Rencum, The Netherlands, Jan. 1994,

Presentation at Dagstuhl Seminar on Incremental Computation
and Dynamic Algorithms, "Algorithm Derivation and Program
Development by Transformation," Schloss Dagstuhl, Ger., May, 1994.

Presentation at Dagstuhl Seminar on Incremental Computation
and Dynamic Algorithms, "Towards Increased Productivity

s " -7_

of Algorithm Implementation" and an APTS System Demonstration,
Schloss Dagstuhl, Ger., May, 1994,

Presentation at Semantique Workshop on Semantics Based
Program Manipulation, "High Level Reading,"” Aarhus, Denmark, J uly, 1994.

Presentation at IFIPS Congress, "Efficient Translation of
External Input in a Dynamically Typed Language," Hamburg, Ger.,
Aug. 1994,

Presentation at AFOSR Software and Systems Program Workshop,
"Towards Increased Productivity of Algorithm Implementation,"
Washington D.C., Sep. 1994.

Invited speaker for Joint 6th Intl. Conf. on Programming

Language Implementation and Logic Programming (PLILP) and 4th

Intl. Conf. on Algebraic and Logic Programming (ALP), "Viewing

A Program Transformation System at Work," Sept., 1994, Madrid, Spain.

iii. Scientific Interactions with other Laboratories and DOD Projects

As an American member of Atlantique, a joint NSF/ESPRIT funded project to promote col-
laboration between American and European researchers in "Semantics-Based Program Manipu-
lation," I spent last year at DIKU, the U. of Copenhagen. While there I-interacted with Neil
Jones, a pioneer in partial evaluation methodology, and other programming language researchers
in his group. As a result, Neil and I did joint work on the acceleration of the classical union/find
method with an application to unification. This work will be included in scaled up productivity
experiments. Neil Jones is also guiding a graduate student in Copenhagen in a dissertation on
the partial evaluation of SETL2. I am working with a graduate student at NYU on a specific
form of SETL2 partial evaluation with the aim of speeding up applications in APTS (which
would improve the turnaround time on the producivity experiments).

T also collaborated with Nils Klarlund at the U. of Aarhus on some of his problems in pro-
gram and hardware verification using BDD technology. We produced a new theoretically faster
DFA minimization algorithm for state-sparse but arbitrarily large alphabets using BDD’s. The
new algorithm will also be part of our scaled-up experiments.

